Ruhr Economic Papers

Ruhr Economic Papers #506

Gold Price Forecasts in a Dynamic Model Averaging Framework – Have the Determinants Changed Over Time?

by Dirk G. Baur, Joscha Beckmann and Robert Czudaj

UDE, 10/2014, 27 S./p., 8 Euro, ISBN 978-3-86788-581-2 DOI: 10.4419/86788581

download

Abstract

The price of gold is influenced by a wide range of local and global factors such as commodity prices, interest rates, inflation expectations, exchange rate changes and stock market volatility among others. Hence, forecasting the price of gold is a notoriously difficult task and the main problem a researcher faces is to select the relevant regressors at each point in time. This combination of model and parameter uncertainty is explicitly accounted for by Dynamic Model Averaging which allows both the forecasting model and the coefficients to change over time. Based on this framework, we systematically evaluate a large set of possible gold price determinants and use both the predictive likelihood and the mean squared error as a measure of the forecasting performance. We carefully assess which predictors are relevant for forecasting at different points in time through the posterior probability. Our findings show that (1) DMA improves forecasts compared to other frameworks and (2) provides clear evidence for the time-variation of gold price predictors.

JEL-Classification: C32, G10, G15, F37

Keywords: Bayesian econometrics; dynamic model averaging; forecasting; gold

Up