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Fast, Approximate MCMC for 
Bayesian Analysis of Large Data Sets:                        
A Design Based Approach

Abstract
We propose a fast approximate Metropolis-Hastings algorithm for large data sets 
embedded in a design based approach. Here, the loglikelihood ratios involved in 
the Metropolis-Hastings acceptance step are considered as data. The building block 
is one single subsample from the complete data set, so that the necessity to store 
the complete data set is bypassed. The subsample is taken via the cube method, a 
balanced sampling design, which is defined by the property that the sample mean 
of some auxiliary variables is close to the sample mean of the complete data set. We 
develop several computationally and statistically efficient estimators for the Metropolis-
Hastings acceptance probability. Our simulation studies show that the approach works 
well and can lead to results which are close to the use of the complete data set, while 
being much faster. The methods are applied on a large data set consisting of all German 
diesel prices for the first quarter of 2015.
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1 Introduction

Consider the update step in the Metropolis-Hastings algorithm for the simulation of the posterior

distribution

π(θ|D) ∝ L(θ|D)π(θ),

where θ is the parameter vector, π(θ) is the prior, D is the available data and L is the likelihood

L(θ|D) =

N∏
k=1

L(θ|Dk).

We restrict attention to the case where the observations are independent given θ, most common under

a regression framework. The update step consists of the following steps: Given the current value θc,

a proposal θ� is drawn from the proposal distribution G(·|θc). The current value is set to the proposal

with probability

α(θc,θ�) = 1 ∧ L(θ�|D)π(θ�)G(θc|θ�)

L(θc|D)π(θc)G(θ�|θc)
. (1)

The computational cost for the computation of α(θc,θ�) is linear in N . As a result, large data sets

pose a problem for the algorithm. Due to the onset of large data sets, accelerating the algorithm is

a highly relevant issue Green et al. (2015). The aim of this paper is to accelerate the update step by

using a computationally efficient and precise design based estimator for α(·, ·) using a single fixed

subsample of the data. Compared to repeatedly subsampling the data, this approach avoids two types

of overhead: (1) subsampling the data, via a possibly computationally expensive sampling algorithm

(see, e.g, Quiroz et al. 2014). (2) storing and accessing the data. This is especially relevant for data

sets which are too large to be read in memory.

Several proposals have been made to accelerate the algorithm by drawing a subsample for every

update step: Korattikara et al. (2014) and Bardenet et al. (2014) represent the update step as a hypoth-

esis test. Maclaurin and Adams (2014) use a completion of the posterior distribution via auxiliary

variables. For their approach, a computationally cheap lower bound must be available for all likeli-

hood contributions. Quiroz et al. (2014) use a pseudo-marginal argument where an unbiased estimator

for the likelihood is needed: They construct this estimator by debiasing an exponentiated estimator

for the loglikelihood, relying on a normality assumption. To the best of our knowledge, Maire et al.

(2015) is the only article considering the use of subsamples which stay fixed during several iterations.

We take the same perspective as these authors: Our algorithm belongs to the class of noisy Monte
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Carlo algorithms: Here, we obtain deviates from a (close) approximation to the posterior distribution

using the complete data set.

The paper is structured as follows: Section 2 gives background on noisy MCMC, Section 3 on

sampling theory. Section 4 describes the proposed algorithm, Section 5 reports a simulation study.

Section 6 applies the methods to a large data set on gas prices. Section 7 concludes with a discussion.

2 Noisy Metropolis-Hastings

It is convenient to use the following representation of the update step of the Metropolis-Hastings

algorithm, used by Korattikara et al. (2014) and Bardenet et al. (2014): Draw θ� ∼ G(·|θc), u ∼
Unif(0, 1), and accept the proposal if

log
[
u
π(θc)G(θ�|θc)

π(θ�)G(θc|θ�)

]
> φ̇, (2)

where φ̇ =
∑N

k=1 φk, is the sum of loglikelihood ratios:

φk = φ(θ�,θc|Dk) = logL(θ�|Dk)− logL(θc|Dk).

The MH algorithm simulates a Markov chain with transition kernel K which is invariant under

π(θ|D). Replacing the left hand side or the right hand side in (2) by an estimator implies the use

of an approximate transition kernel K̂ which in general is not invariant under π(θ|D). One exception

is given by the pseudo-marginal approach by Andrieu and Roberts (2009) , where an unbiased estima-

tor of the likelihood is available, used by Quiroz et al. (2014). However, getting an unbiased estimator

of the likelihood in a fixed subsample context is not feasible without questionable assumptions and

might lead to trading small bias with high variance.

Although the theoretical properties of noisy MCMC are not completely understood, there are

some encouraging results: Alquier et al. (2014) have shown that the stationary distribution of the

Markov chained obtained using α̂(·, ·) is an useful approximation to π(θ|D), provided that |α(·, ·)−
α̂(·, ·)| is bounded. Nicholls et al. (2012) show that, if a Gaussian unbiased estimator for log π(θ�|D)−
log π(θc|D) with known variance is available, the update step of the Metropolis-Hastings algorithm

can be adjusted via a method called the penalty method, so that the chain targets π(θ|D) as desired.

Usually, such an estimator is not available. Nicholls et al. (2012) show that plugging an estimate of
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Algorithm 1 Metropolis Hastings update step for posterior simulation

Draw u from U(0, 1)

Set ρ to log[uπ(θc)G(θ�|θc)
π(θ�)G(θc|θ�)

]

if ρ > φ̇ then
Set θc to θ�

end if
return θc

Algorithm 2 Metropolis Hastings algorithm for posterior simulation, generic version

for r = 1 to R− 1 do
Draw θ� from G(·|θc)
Set φ̇ to

∑N
i=1 Li(θ

�|Di)− Li(θ
c|Di)

Do Metropolis-Hastings update step for posterior simulation, using θ�, φ̇
Set θ(r) to θc

end for
return θ(0), . . . ,θ(R−1)

log π(θ�|D)−log π(θc|D) into α leads to a chain which is very close to the penalty method, provided

that the expected absolute error E|α(·, ·)− α̂(·, ·)| is small. As such, the main objective here is to find

a computationally cheap estimator for φ̇, so that |α(·, ·)− α̂(·, ·)| is small.

3 Some sampling theory

Let U = {1, . . . , N} be a set of labels associated with a finite population of N units, here given by the

complete data set. The aim of survey-sampling is to estimate a finite population total, ẏ =
∑

k∈U yk

of a variable y, using a sample S ⊆ U . Totals are denoted by dots. The set S is selected via a

stochastic selection scheme, called the sampling design. Design based sampling is used when the

cost of obtaining the value yk for all units k ∈ U is too expensive, so the sample size n ..= |S| is

usually much smaller than N . For this article, cost is given by computation time. In a design based

approach, all randomization is due to the sampling design, while the values y1, . . . , yN of the study

variable are unknown constants.

A sample can be represented by a random vector

i = (i1, . . . , ik, . . . , iN )�,
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where ik takes the value 1 if unit k is in the sample S and 0 otherwise. The sampling design f(·) is a

probability distribution on a support Q, so that

Ef [i] =
∑
i∈Q

if(i) =.. η,

where the inclusion probability P (k ∈ S) = P (ik = 1) of an element k is given by ηk. Here,

attention is restricted to without-replacement sampling designs with fixed sample size, so that

Q =
{
i ∈ {0, 1}N |

∑
k∈U

ik = n
}
.

Note that the empty sample i = (0, . . . , 0)� and the census i = (1, . . . , 1)� are in Q. For more on

sampling theory see Tillê (2006) or Särndal et al. (2003).

3.1 Sampling design: Cube sampling

Denoting sums of the form
∑

k∈S k as
∑

S k, the benchmark estimator for a total ẏ is the Horvitz-

Thompson estimator:

ˆ̇yHT =
∑
U

ikyk
ηk

=
∑
S

ykdk,

where dk = 1/ηk is called the design weight. Here, only sampling designs are used where all

inclusion probabilities are equal, so that without loss of generality ηk = n/N for k ∈ U and

ˆ̇yHT =
N

n

∑
S

yk = Nȳ,

where ȳ is the sample mean of y.

The variance of the Horwitz-Thompson estimator can be lowered by exploiting additional in-

formation: Assume zi,k, i ∈ {cube, greg} is known for all elements in the population, where

zi,k = (zi,k,1, . . . , zi,k,pi)
� is a vector of values of pi auxiliary variable for unit k. The auxiliary vari-

ables zcube,1, . . . , zcube,pcube and zgreg,1, . . . , zgreg,pgreg may intersect and may be identical or distinct.

Let żcube =
∑

U zcube,k denote the known total of the auxiliary variables used for cube sampling. The

objective of balanced sampling is to obtain a sample, respecting the vector of inclusion probabilities

η, so that the constraint

ˆ̇zHT
cube = żcube (3)
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Figure 1: Set of all samples as repre-

sented as cube, for the case N = 3,

giving 23 = 8 possible samples.
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Figure 2: Set of all samples with con-

straint space. In this case, there are

no samples in the constraint space.

holds. For equal inclusion probability designs as used here, this is equivalent to the constraint

n−1
∑
S

zcube,k = N−1
∑
U

zcube,k,

so that the sample mean of the auxiliary variables used for cube sampling is equal to their population

mean. Usually, an exact solution is not possible for all auxiliary variables, so that samples are found

which satisfy (3) approximately. Here, the role of the balanced sampling algorithm is to find a sample

which is “close” to the complete data set. The choice of auxiliary variables is discussed in section 4.

We will use the cube method Deville and Till (2004), which is based on a geometrical representation

of a sampling design: Let C = [0, 1]N denote a cube equipped with 2N vertices. C represents the set

of all 2N possible samples from a population of size N , where every vertex of C is associated with a

sample, see figure 1.

Define the vector ak := zcube,k/ηk and the pcube×N matrix A := (a1, ..,ak, . . . ,aN ), Then the

balancing equations (3) can be written as

Ai = Aη. (4)

The system of equations (4) defines the hyperplane

P = η +K(A)
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in RN , where K(A) is the kernel of A. The basic idea of cube sampling is to choose a sample as a

vertex of C in P or, if that is not possible, near P . Cube sampling consists of two phases: The flight

phase is a martingale with initial value η in the constraint space K = C ∩ P , where the constraint (3)

is satisfied. At the end of the flight phase a vector i� is obtained. If all elements of i� are either 1 or

0, the landing phase is not necessary as a vertex of C is reached. If this is not the case, the balancing

equations are relaxed and the elements of i� are randomly rounded so that

E[i] = η,

hence, given inclusion probabilities are respected. Deville and Till (2004) show that it is always

possible to satisfy one balancing equation. It holds that
∑

U ηk = n. As such, setting zcube,1 = η

guarantees a fixed sample size, as the balancing equations are relaxed starting with the last auxiliary

variable zcube,pcube . The authors show that the cube method achieves the bound

|żcube,j − ˆ̇zHT
cube,j |

N
= O(pcube/n), for j = 1, . . . , pcube, (5)

where f = O(g) if there is an upper bound of |f | which is proportional to g. Due to the bound (5),

the error becomes small if the sample size is large, compared to the number of auxiliary variables.

We will use the implementation by Chauvet and Tillê (2006) with computational cost linear in N .

3.2 Regression estimator

The Horvitz-Thompson estimator is the only estimator which is unbiased for all sampling designs.

However, there are better estimators in an MSE-sense if this condition is relaxed. A large classe is

given by the generalized regression estimator (greg). Model the study variable y via

yk = β�zgreg,k + εk, εk ∼ N(0, ω2).

The generalized regression estimator ˆ̇ygreg for a total ẏ is given by the sum of fitted values plus the

Horvitz-Thompson estimator for the prediction error:
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ˆ̇ygreg =
∑
U

ŷk + ˆ̇eHT (6)

=β̂�żgreg +
N

n

∑
S
(yk − ŷk), (7)

where ŷk = z�
k β̂ is the fitted value of element k, β̂ is

β̂ =

(∑
S

zgreg,kz
�
greg,k

)−1∑
S

ykzgreg,k,

and ek is the residual ek = yk − ŷk. The generalized regression estimator can also be written as

weighted sum
∑

S wkyk, where the weights

wk = N/n
[
1 + (N/n)(żgreg − ˆ̇zHT

greg)
�× (8)(∑

S
zgreg,kz

�
greg,k

)
zgreg,k

]
, for k ∈ S,

depend on the sample but not on the study variable. Hence, the same weight vector can be used

for several variables, so that the estimator is cheap to compute. The greg weights (8) satisfy the

calibration equation

∑
S

wkzgreg,k = żgreg.

For equal inclusion probabilities, the approximate variance of the generalized regression estimator is,

up to a constant, given by the sum
∑

U (yi − z�
greg,kb)

2, where

b =

(∑
U

zgreg,kz
�
greg,k

)−1∑
U

ykzgreg,k.

As such, predictive power for y is the main requirement for the auxiliary variables.

4 Description of algorithm
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Algorithm 3 Approximate Metropolis-Hastings - phase 1

Select subsect S ⊂ U via cube method, using auxiliary variables zcube,1, ..., zcube,pcube
Set i to 1
for q = 1 to pgreg × 100 do

Draw θ� from G(·|θc)
Set φ̇ to

∑
S φk

Do Metropolis-Hastings update step for posterior simulation, using θ�, φ̇
Set θ(q) to θc

if q modulo 100 = 0 then
for k ∈ U do

Set zgreg,k,i to φk

end for
Set i to i+ 1

end if
end for

Algorithm 4 Approximate Metropolis-Hastings - greg, basic version

Do approximate Metropolis-Hastings - phase 1

for k ∈ S do
Compute wk

end for
for r = 1 to R do

Draw θ� from G(·|θc)
for k ∈ S do

Compute φk

end for
Set

ˆ̇φ to
∑

S wkφk

Do Metropolis-Hastings update step for posterior simulation, using θ�, ˆ̇φ
Set θr to θc

end for
return θ(0), . . . ,θ(R−1)

The objective is to estimate the total φ̇ =
∑

U φk. The basic idea is to combine a sample obtained

by cube-sampling with a regression estimator.

Denote the posterior distribution associated with a subsample S by πS . The algorithm consists of

two phases. In the first phase, a sample is chosen via cube sampling, so that the posterior distribution

from this subsample is close to π. To find a measure for closeness, the result of Maire et al. (2015) is

used. These authors have shown that the minimal Kullback-Leibler distance from πS to πU is mini-

mized if the sufficient statistics for θ in S are equal to the sufficient statistics in the population. For

many nontrivial cases, there exists no such sufficient statistic which can also be written as sum (as

would be necessary for the use of cube sampling). However, the result serves as a general guide, in

that statistics which summarize the complete data D set are used. Such statistics can be derived from
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Algorithm 5 Approximate Metropolis-Hastings - greg, ridge variant

Do approximate Metropolis-Hastings - phase 1

for r = 1 to R do
Draw θ� from G(·|θc)
for k ∈ S do

Compute φk

end for
Set c to M�φ
for i = 1 to pgreg do
α̂i ← ci/λi

end for
Set σ̂2 to (n− pgreg)

−1(φ−Mα̂)�(φ−Mα̂)

Set κ̂ to
pgregσ̂2

ξ̂�ξ̂

for i = 1 to pgreg do
Set ξ̂i(κ̂) to ci/(λi + κ̂)

end for
Set

ˆ̇φ to ξ(κ̂)� ˜̇zgreg + (N/n)
(
(
∑

S φk)− ξ(κ̂)� ˜̇zgreg,S
)

Do Metropolis-Hastings update step for posterior simulation, using θ�,
ˆ̇φ

end for
return θ(0), . . . ,θ(R−1)

inspection of the posterior distribution. Note that the computation time of cube sampling algorithm

scales badly with the number of auxiliary variables, so that a low number of auxiliary variables for the

cube sampling algorithm is preferable. Also during the first phase, auxiliary variables for the regres-

sion estimator are computed. A good predictor for the value of φ(θ�,θc|Dk) is given by φ(·, ·|Dk),

for arguments near θ� and θc. This is used to obtain the auxiliary variables for the regression estima-

tor: If the subsample is obtained, the posterior distribution πS is an overdispersed approximation to π

so that the support of θ is covered by πS . The auxiliary variables for the regression estimator are sub-

sequently computed as followed: A regular Metropolis-Hastings algorithm is run using the subsample

for 100pcube iterations. Every 100th iteration, the loglikelihood ratio obtained from the current and

proposed value of θ is used as auxiliary variables, so that the auxiliary variables are computed as

zgreg,k,j = φ(θ�,θ(r)|Dk),

for k ∈ S, r = 100, 200, . . . , 100pgreg, where j = r/100 varies with r.

The complete data set only has to be available for the first phase. For the second phase, the

Metropolis-Hastings algorithm proceeds using the subsample with φ̇ replaced by an estimator using
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the derived auxiliary variables zgreg,1, ..., zgreg,pgreg . We use the posterior mode from the trial run of

the first phase as starting values.

4.1 Ridge variant

The GREG estimator can be improved by improving the predictions for the values of φk. We use the

ridge estimator to achieve better prediction performance. This estimator has the following advantages:

(1) It is available in closed form1, as

β̂(κ) =

(∑
S

zgreg,kz
�
greg,k + Iκ

)−1∑
S

ykzgreg,k.

(2) Shrinkage is controlled by a single parameter κ. (3) The complete data posterior distribution is

better covered with a higher number of auxiliary variable. This results in multicollinearity, as the

auxiliary variables zgreg,1, ..., zgreg,pgreg are strongly correlated, so that the matrix
∑

S zgreg,kz
�
greg,k

is ill conditioned for large pgreg. However, this is a desired property, as it indicates strong correlation

with future values of φ(·, ·|Dk), k ∈ U . Hence, multicollinearity is a consequence of a set of useful

auxiliary variables, which in turn is solved by the ridge estimator.

The third point suggests a simple heuristic to set pgreg: It is set at least so large that the matrix∑
S zgreg,kz

�
greg,k is ill conditioned. Following Hoerl et al. (1975), the shrinkage parameter κ is set

as

κ :=
kσ̂2

β̂�β̂
,

where σ̂2 is an estimate for var(φ|zgreg,1, ..., zgreg,pgreg). While determining κ via cross validation

might be preferable, using a closed form expression is much faster. In addition, cross-validation is

used to estimate the out-of sample prediction error. However, the procedure used here is based on the

assumption that the subsample is similar to the full data set. Given κ, the ridge variant of the greg

estimator can be quickly computed using precomputed entities. For details see appendix A.1.
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5 Simulation study

5.1 Setup

Here, results of a simulation study will be reported. We generated M = 100 data sets from the model

yk = x�
k β + εk, εk ∼ N (0, σ2), k = 1, . . . , N = 100000,

where x1 = (1, . . . , 1)� and the elements of x2, ...,x5 are draws from an uniform distribution with

minimum and maximum given by −2 and 2. The elements of the parameter vector θ = (β�, log σ)�

are deviates from a standard normal distribution. The posterior distribution is simulated using the

algorithm described in section 4. We use a random walk Metropolis-Hastings sampler, where the

variance of the proposal distribution is scaled during burnin so that the acceptance probability is

around 0.234. We use r = 100000 iterations, taking the first half of the chain as burnin. For refer-

ence, we also simulate the posterior distribution using the complete data set and use a variant where

no auxiliary variables are used, so that φ̇ is estimated via the sample mean. To study the gain of the

cube sampling procedure, the sample was additionally chosen using simple random sampling (si);

which is equivalent to cube sampling with a single auxiliary variable given by the inclusion proba-

bilities. We use pgreg = 1, 3, 5, 10, 20, 30 auxiliary variables for the regression estimator. For the

basic greg estimator, it was not possible to set pgreg ≥ 20 due to multicollinearity. In addition,

we generated data sets from the model yk ∼ Poisson(exp(x�
k β)), with the same configurations as

above otherwise. For both models, the auxiliary variables used for cube sampling are derived from

1Unlike e.g. the LASSO estimator, which might be preferable from a prediction perspective.
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Figure 4: Root mean squared error for θ, relative to root mean squared error obtained with

complete data set, plotted on log scale for visualization. Rows: Gaussian and poisson likeli-

hood. Columns: Varying values of of pgreg.

the likelihood: For the gaussian likelihood, we take the residuals and the squared residuals obtained

from the maximum likelihood estimator βml = (X�X)−1X�y as zcube,1 and zcube,2. In addition,

we generate three draws from N(βls, 3σ̂
2X�X)−1), where σ̂2 = N−1

∑
U (yk−x�

k β)
2 and use the

associated residuals (and the squared residuals) as auxiliary variables. For the poisson likelihood, we

use the loglikelihood kernel ykx
�
k β − exp(x�

k β) as auxiliary variables. The maximum likelihood

estimator is obtained via numerical methods, otherwise values of β were obtained as above.
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Figure 5: Exemplary quantile-quantile plots for a single parameter.
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Figure 6: Gaussian likelihood with known variance: Root mean squared error for quantiles

of θ, relative to root mean squared error obtained with complete data set, for quantile q =
0.01, 0.99.
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5.2 Results

The main criterion is the root mean squared error (rmse) for the true parameter vector θ:

rmse(θ̂) =

√√√√1

6

6∑
i=1

(θ̂i − θi)2,

where θ̂i is estimated using the posterior mean. We report the relative root mean squared error, in

reference to the use of the complete data set: rmse(θ̂)/rmse(θ̂U ), where rmse(θ̂U ) is the rmse

obtained by the use of the complete data set.

Speedup: The speedup, defined as computation time using the given method, divided by the compu-

tation time using the complete data set, is shown in figure 3. The basic greg variant is by far fastest,

while the speedup for the ridge variant drops for larger number of auxiliary variables.

Parameter vector: Figure 4 shows the relative root mean squared error for the true parameter vector

θ. It can be seen that the error mainly depends on pgreg: If there are enough auxiliary variables for

the estimation (in this case, around 20), the relative rmse can approach 1. This holds for both like-

lihoods. Cube sampling reduces the error, although the effect is larger for the gaussian likelihood.

We interpret this as a sign that the auxiliary variables are better chosen for the gaussian likelihood.

For a large number of auxiliary variables used for estimation, this difference becomes small. Given a

fixed value of pgreg, the difference in error between the basic greg estimator and the ridge estimator

are small. However, the ridge variant allows the use of a larger number of auxiliary variables and is

therefore to be preferred.

Quantiles: To study the accuracy of the simulated posterior distribution, we set σ equal to one and

assume it to be known, so that the posterior distribution under a non-informative prior β ∝ constant

is given by a multivariate normal distribution with variance Σ = (X�X)−1 and mean ΣX�y. As

such, we can evaluate how well the true posterior distribution is simulated as whole, beyond point

estimation. Exemplary quantile-quantile plots for a single parameter are shown in figure 5. The re-

sults are similar to the ones regarding θ: More auxiliary variables lead to a better approximation of

the results of the complete data set, cube sampling improves over simple random sampling. Figure
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Figure 7: Coefficient plot (posterior means). Reference catagories are added as red points.

Posterior intervals for 0.01-quantile and 0.99-quantile are barely visible and henceforth omit-

ted.

6 shows the relative root mean squared error for the marginal quantiles of θ1, . . . , θ5. The root mean

squared error of the quantile vector is computed as:

rmse(Qq(θ)) =

√√√√1

5

5∑
i=1

(Qq(θi)− Q̂q(θi))2,

for q = 0.01, 0.99, where Qq(x) is the q-Quantile of x. Here, the results are similar to the ones

regarding θ as well, however the relative root moon squared error does not approach 1 as fast as for

point estimation.
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6 Application

The methods presented here will be applied on a large data set consisting of the most recent gas price

for every hour for every gas station in Germany for the first quarter of 2015. The data set consists of

31 million rows. We estimate the regression model:

dieselpricei,t =β1 + fperiodic(weekday) + fperiodic(hour)+

5∑
j=1

βjI[brandi = j] + εi,t, εi,t ∼ N(0, σ2),

where the periodic effects are estimated using dummies, setting one category equal to zero, so that

θ = (β1,β
�
day,β

�
hour,β

�
brand, σ)

�. We use the ridge variant with a sample size of n = 10000 and

pgreg = 50 auxiliary variables. For the cube sampling, 3 partial least squares latent variables are used.

Partial least-squares linear combinations are fast to compute, and summarize the design matrix while

preserving the correlation with y. The algorithm takes about 11 minutes on a Intel xeon cpu e5 with

2.4GHZ. Figure 7 reports the estimated posterior means of the regression coefficents. Most variation

is explained by the hourly effects, diesel price is most expensive in the morning, least expensive in the

evening around 19:00 with a difference of around 7 cents. The day of the week effect is very small,

compared to the hour effect: Gas prices are highest on mondays, with an estimated price difference

of less than 0.5 cent. The most expensive brand is Shell, followed by Aral. The smaller brands (Star

and Jet) are more than 3 cents cheaper than Aral. These results are country-wide and do not take local

effects into account, mainly the effect of the location of the gas station. Furthermore, there might be

an interaction between the day of the week and the hour of the day. These topics should be the subject

of a separate study.

7 Discussion

We developed an approximate version of the Metropolis-Hastings using a single subsample. Our sim-

ulation study shows that the algorithm can produce posterior simulations which are almost identical

to the use of the full data while being several orders of magnitudes faster. The methods were validated

using a simulation comparing the inferences obtained from the approximate posterior to the complete

data posterior. The results suggest that the error obtained from using the algorithm is small enough
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for practical purposes for standard models. However, further work regarding more complex models

is necessary.

We propose to use this approximate version for the simulation of a posterior distribution which

is used directly for inference. However, there are further possible applications for the algorithm; the

algorithm might be used for the case when a fast approximation to the posterior distribution is of use,

e.g., during the burnin of an adaptive Metropolis-Hastings algorithm.
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A Appendix

A.1 Computation of Ridge estimator

For the model

φ = Zgregβ + e,

the ridge estimator for a given smoothing parameter κ is given by β = (Z�
gregZgreg + κ)−1Zgregφ,

where the rows of Zgreg are given by zgreg,k, for k ∈ S . Define M ..= ZgregG, ξ ..= G�β, then

φ = ZgregGG�β + e = Mξ + e;
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where Z�
gregZgreg = GΛG� is the eigen-decomposition of Z�

gregZgreg with orthonormal G, so that

Λ = diag(λ1, . . . , λk),

λ1 ≥ λ2,≥ · · · ≥ λp

where λ1, . . . , λp are the eigenvalues of Z�
gregZgreg. It holds that Z�

gregZgreg+cI = G(Λ+cI)G�,

so that

(Z�
gregZgreg + κI)−1 = G(Λ + κI)−1G�,

and

β(κ) = G(Λ + κI)−1M�φ →

ξ(κ) = (Λ + κI)−1M�φ.

Define c ..= M�φ. Than, the elements of ξ̂(κ) are

ξ̂i =
ci

λi + κ
, i = 1, . . . , pgreg.

Following Hoerl et al. (1975), the ridge parameter is set as:

κ̂ =
pgregσ̂

2

ξ̂(0)�ξ̂(0)
. (9)

The residual variance is estimated using the usual unbiased estimator

σ̂2 = (n− pgreg)
−1

∑
i∈S

(φi − z�
i β̂(0))

2

= (n− pgreg)
−1(φ−Mξ̂(0))�(φ−Mξ̂(0)).

The vector β̂(κ̂) does not have be computed, using representation (7) of the greg estimator: Define

˜̇zgreg := ż�
gregG and ˜̇zgreg,S := (

∑
S zi)

�G, then φ̇ is estimated via:

ξ(κ̂)� ˜̇zgreg + (N/n)

(
(
∑
S

φk)− ξ(κ̂)� ˜̇zgreg,S

)
.

The vectors ˜̇zgreg and ˜̇zgreg,S only have to be computed once.
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